
Copyright 2005 John Cowan under GPL 1

RESTful Web Services

An introduction to building Web Services
 without tears (i.e., without SOAP or WSDL)

John Cowan
cowan@ccil.org

http://www.ccil.org/~cowan

Copyright 2005 John Cowan under GPL 2

Copyright
● Copyright © 2005 John Cowan
● Licensed under the GNU General Public

License
● ABSOLUTELY NO WARRANTIES; USE AT YOUR

OWN RISK
● Black and white for readability
● Gentium font for readability and beauty

Copyright 2005 John Cowan under GPL 3

The Pitch

Would you like something cleaner than SOAP?
Something less impenetrable than WSDL?

Something less confusingly intertwingled than
the various WS-* bafflegab standards? ... Say, just

what is this Web Services jazz anyhow?

Copyright 2005 John Cowan under GPL 4

The Pitch

It’s all No Problem. It’s all Easy as Pi. REST isn’t
some obscure thing that nobody supports; it’s the
way the Web already works, just formalized a bit

and with some do’s and don’ts.

Copyright 2005 John Cowan under GPL 5

The Pitch

By deconstructing what you already know about
the Web, you can rebuild it into a set of principles
for sound design, without worrying about it. No,

it won’t be “you push the button, we do the
REST”. But it’ll be clean, secure, straightforward,

extensible, discoverable, maintainable.

Copyright 2005 John Cowan under GPL 6

Talk is cheap

But that's what you're going to get today. After
we're done here, go home and try it for yourself.

Copyright 2005 John Cowan under GPL 7

Uniform Resource Identifier
● I use the term “URI” (Uniform Resource

Identifier) throughout
● If it makes you feel better, cross it out and use

“URL” instead
● Contrary to all propaganda, there are no

effective differences these days

Copyright 2005 John Cowan under GPL 8

Credits
● The guts of this presentation comes from the

writings of:
– Roy Fielding
– Ryan Tomayko
– Paul Prescod
– Mark Baker
– Jeff Bone (conversus)
– All the contributors to RestWiki

Copyright 2005 John Cowan under GPL 9

Roadmap
• Web Services (12)
• What’s REST? (18)
• The killer argument (7)
• Distributed Systems (13)
• What about ... (13)
• Clarifying “state” (6)

• From here to there (18)
• SOAP (9)
• Cleaning up (14)
• RESTafarian email (8)
• Related architectures (6)
• Final thoughts (3)

Copyright 2005 John Cowan under GPL 10

Web Services

Copyright 2005 John Cowan under GPL 11

What’s a Web Service?
● A web service is just a web page meant for a

computer to request and process
● More precisely, a Web service is a Web page

that’s meant to be consumed by an autonomous
program as opposed to a Web browser or
similar UI tool

Copyright 2005 John Cowan under GPL 12

What’s a Web Service?
● Web Services require an architectural style to

make sense of them, because there’s no smart
human being on the client end to keep track

● The pre-Web techniques of computer
interaction don't scale on the Internet

● They were designed for small scales and single
trust domains

Copyright 2005 John Cowan under GPL 13

The scope of the problem
● Computer A in New York ...
● ... tells computer B in Samarkand ...
● ... about a resource available on Computer C in

Timbuktu
● None of them belongs to the same trust

domain

Copyright 2005 John Cowan under GPL 14

Nouns
● URIs are the equivalent of a noun
● Most words in English are nouns, from cat to

antidisestablishmentarianism
● The REST language has trillions of nouns for all

the concepts in all the heads and files of all the
people in the world

Copyright 2005 John Cowan under GPL 15

Verbs
● Verbs (loosely) describe actions that are

applicable to nouns
● Using different verbs for every noun would

make widespread communication impossible
● In programming we call this “polymorphism”
● Some verbs only apply to a few nouns
● In REST we use universal verbs only

Copyright 2005 John Cowan under GPL 16

GET: fetch information
● To fetch a web page, the browser does a GET

on some URI and retrieves a representation
(HTML, plain text, JPEG, or whatever) of the
resource identified by that URI

● GET is fundamental to browsers because
mostly they just browse

● REST requires a few more verbs to allow taking
actions

Copyright 2005 John Cowan under GPL 17

Four verbs for every noun
● GET to retrieve information
● POST to add new information, showing its

relation to old information
● PUT to update information
● DELETE to discard information

Copyright 2005 John Cowan under GPL 18

Not such a big deal
● The Web already supports machine-to-

machine integration
● What's not machine-processable about the

current Web isn't the protocol, it's the content

Copyright 2005 John Cowan under GPL 19

XML
● Using XML formats as your machine-

processable representations for resources
allows applying new tools to old data

● It also simplifies interconnection with remote
systems

● XML has plenty of tools, as we all know

Copyright 2005 John Cowan under GPL 20

Why not just use plain HTML?
● Web pages are designed to be understood by

people, who care about layout and styling, not
just raw data

● Every URI could have a human-readable and a
machine-processable representation:
– Web Services clients ask for the machine-readable

one
– Browsers ask for the human-readable one

Copyright 2005 John Cowan under GPL 21

Well, not quite every URI
● The information on some pages is going to be

too complex for machines to understand
● Anna Karenina has lots of meaning, but making

it into a non-trivial Web service is an AI-
complete problem

Copyright 2005 John Cowan under GPL 22

Are we doing this now?
● Most of us are are busy writing to layers of

complex specifications
● Our nouns aren't universal
● Our verbs aren't polymorphic
● The proven techniques of the Web are being

discarded for a pot of messages

Copyright 2005 John Cowan under GPL 23

What’s REST?

Copyright 2005 John Cowan under GPL 24

So what's REST already?
● REpresentational State Transfer
● An architectural style, not a toolkit
● “We don't need no steenkin' toolkits!”
● A distillation of the way the Web already

works

Copyright 2005 John Cowan under GPL 25

REST defined
● Resources are identified by uniform resource

identifiers (URIs)
● Resources are manipulated through their

representations
● Messages are self-descriptive and stateless
● Multiple representations are accepted or sent
● Hypertext is the engine of application state

Copyright 2005 John Cowan under GPL 26

REST style
● Client-server
● Stateless
● Cached
● Uniform interface
● Layered system
● (Code on demand)

Copyright 2005 John Cowan under GPL 27

Snarky question
● How are representations transferred, and why

would I want a representation of something to
be transferred to something else?

● Representations are all we really have (the
shadows in Plato's cave)

● Representations are transferred by ordinary
digital means – it's how we think about them
that's new

Copyright 2005 John Cowan under GPL 28

Representation
● Resources are first-class objects

– Indeed, “object” is a subtype of “resource”
● Resources are retrieved not as character

strings or BLOBs but as complete
representations

Copyright 2005 John Cowan under GPL 29

A web page is a resource?
● A web page is a representation of a resource
● Resources are just concepts
● URIs tell a client that there's a concept

somewhere
● Clients can then request a specific

representation of the concept from the
representations the server makes available

Copyright 2005 John Cowan under GPL 30

State
● “State” means application/session state
● Maintained as part of the content transferred

from client to server back to client
● Thus any server can potentially continue

transaction from the point where it was left
off

● State is never left in limbo

Copyright 2005 John Cowan under GPL 31

Transfer of state
● Connectors (client, server, cache, resolver,

tunnel) are unrelated to sessions
● State is maintained by being transferred from

clients to servers and back to clients

Copyright 2005 John Cowan under GPL 32

REST and HTTP
● REST is a post hoc description of the Web
● HTTP 1.1 was designed to conform to REST
● Its methods are defined well enough to get

work done
● Unsurprisingly, HTTP is the most RESTful

protocol
● But it's possible to apply REST concepts to

other protocols and systems

Copyright 2005 John Cowan under GPL 33

Other protocols
● Web interaction using other protocols is

restricted to REST semantics
● Sacrifices some of the advantages of other

architectures
– Stateful interaction with an FTP site
– Relevance feedback with WAIS search

● Retains a single interface for everything

Copyright 2005 John Cowan under GPL 34

Existing HTTP uses
● Web browsing (obviously)
● Instant messaging
● Content management
● Blogging (with Atom)
● What's outside its scope?

Copyright 2005 John Cowan under GPL 35

What do REST messages look like?
● Like what we already know: HTTP, URIs, etc.
● REST can support any media type, but XML is

expected to be the most popular transport for
structured information.

● Unlike SOAP and XML-RPC, REST does not
really require a new message format

Copyright 2005 John Cowan under GPL 36

Multiple representations
● Most resources have only a single

representation
● XML makes it possible to have as many

representations as you need
● You can even view them in a clever way,

thanks to the magic of XSLT and CSS

Copyright 2005 John Cowan under GPL 37

Why hypertext?
● Because the links mirror the structure of how

a user makes progress through an application
● The user is in control, thanks to the Back

button and other non-local actions
● In a Web service, the client should be in

control in the same sense

Copyright 2005 John Cowan under GPL 38

Web-based applications
● A Web-based application is a dynamically

changing graph of
– state representations (pages)
– potential transitions (links) between states

● If it doesn’t work like that, it may be accessible
from the Web, but it’s not really part of the
Web

Copyright 2005 John Cowan under GPL 39

Code on demand
● Java applets weren’t so hot
● Javascript is very hot
● The XmlHttpRequest object lets you do REST

from inside a web page
– Most browsers provide it nowadays, with a few

annoying differences
– It doesn’t really require XML messages

Copyright 2005 John Cowan under GPL 40

A few simple tests of RESTfulness
● Can I do a GET on the URLs that I POST to?
● Iff so, do I get something that in some way

represents the state of what I've been building
up with the POSTs?

● HTML forms almost always fail miserably

Copyright 2005 John Cowan under GPL 41

A few simple tests of RESTfulness
● Would the client notice if the server were to be

– restarted at any point between requests
– re-initialized by the time the client made the next

request
● These tests are not anything like complete

Copyright 2005 John Cowan under GPL 42

The killer argument

Copyright 2005 John Cowan under GPL 43

Arguments against non-REST designs
● They break Web architecture, particularly

caching
● They don't scale well
● They have significantly higher coordination

costs

Copyright 2005 John Cowan under GPL 44

Caching? Well ...
● The Web's caching architecture of the Web

isn't always the Right Thing
● Using POST loosely to mean “don't cache” has

been a good way of dealing with this problem
● Learning the stricter REST semantics of POST

isn't just an extension of existing practice

Copyright 2005 John Cowan under GPL 45

Scaling? Well...
● What kind of scaling is most important is

application-specific
● Not all apps are Hotmail, Google, or Amazon
● Integration between two corporate apps has

different scaling and availability needs
● The right approach to one isn't necessarily the

right approach to the other

Copyright 2005 John Cowan under GPL 46

The killer argument
● A service offered in a REST style will

inherently be easier to consume than some
complex API:
– Lower learning curve for the consumer
– Lower support overhead for the producer

Copyright 2005 John Cowan under GPL 47

What if REST is not enough?
● What happens when you need application

semantics that don't fit into the GET / PUT /
POST / DELETE generic interfaces and
representational state model?

● People tend to assume that the REST answer is:
– If the problem doesn't fit HTTP, build another

protocol
– Extend HTTP by adding new HTTP methods

Copyright 2005 John Cowan under GPL 48

But in fact:
● There are no applications you can think of which

cannot be made to fit into the GET / PUT / POST /
DELETE resources / representations model of the
world!

● These interfaces are sufficiently general
● Other interfaces considered harmful because

they increase the costs of consuming
particular services

Copyright 2005 John Cowan under GPL 49

Be fruitful and multiply
● REST design appears to make web apps more

likely to combine successfully with other web
apps

● The resulting complexes of applications have a
larger effect on the web as a whole

● REST tends to appear on the largest scales
● We don’t know in advance which apps will

become large-scale

Copyright 2005 John Cowan under GPL 50

Distributed Systems

Copyright 2005 John Cowan under GPL 51

Distributed Systems
● Components (origin servers, gateways,

proxies, user agents)
● Connectors (clients, servers, caches, resolvers,

tunnels)
● Data elements (resources, resource identifiers,

representations)

Copyright 2005 John Cowan under GPL 52

Components
● Communicate by transferring representations

of resources through a standard interface
rather than operating directly upon the
resource itself

● Used to access, provide access to, or mediate
access to resources

● Intermediaries are part of the architecture, not
just infrastructure like IP routers

Copyright 2005 John Cowan under GPL 53

Some components
● Origin servers: Apache, IIS
● Gateways: Squid, CGI, Reverse Proxy
● Proxies: Gauntlet
● User agents: Firefox, Mozilla, Safari, IE

Copyright 2005 John Cowan under GPL 54

Connectors
● Present an abstract interface for component

communication, hiding the implementation
details of communication mechanisms

● All requests must be stateless, containing all
the information necessary for the
understanding of that request without
depending on any previous request

Copyright 2005 John Cowan under GPL 55

Some connectors
● Clients: browsers, feedreaders, libraries, many

specialized applications
● Servers: Apache, IIS, AOLserver
● Caches: browser cache, Akamai cache network
● Resolvers: DNS lookup, DOI lookup
● Tunnels: SOCKS, SSL after HTTP CONNECT

Copyright 2005 John Cowan under GPL 56

The connector view
● Concentrates on the mechanics of the

communication between components.
● Constrains the definition of the generic

resource interface

Copyright 2005 John Cowan under GPL 57

Resource modeling
● The value of components and connectors is

mostly obvious
● Resources, representations, URIs, and

standardized interfaces are more subtle
matters

Copyright 2005 John Cowan under GPL 58

Resource modeling
● Organize a distributed application into URI-

addressable resources
● Use only the standard HTTP messages -- GET,

PUT, POST and DELETE -- to provide the full
capabilities of that application

Copyright 2005 John Cowan under GPL 59

Some data elements
● Resources: the intended conceptual target of a

hypertext reference
● Resource identifiers: URIs
● Resource metadata: source links, alternates
● Representations: HTML documents, JPEG images
● Representation-specific metadata: media type,

last-modified time

Copyright 2005 John Cowan under GPL 60

Advantages of REST
● Its architectural constraints when applied as a

whole, generate:
– Scalable component interactions
– General interfaces
– Independently deployed connectors
– Reduced interaction latency
– Strengthened security
– Safe encapsulation of legacy systems

Copyright 2005 John Cowan under GPL 61

Advantages of REST
● Supports intermediaries (proxies and

gateways) as data transformation and caching
components

● Concentrates the application state within the
user agent components, where the surplus disk
and cycles are

Copyright 2005 John Cowan under GPL 62

Advantages of REST
● Separates server implementation from the

client's perception of resources (“Cool URIs
Don’t Change”)

● Scales well to large numbers of clients
● Enables transfer of data in streams of

unlimited size and type

Copyright 2005 John Cowan under GPL 63

The key insights
● Discrete resources should be given their own

stable URIs
● HTTP, URIs, and the actual data resources

acquired from URIs are sufficient to describe
any complex transaction, including
– session state
– authentication/authorization

Copyright 2005 John Cowan under GPL 64

What about ...

Copyright 2005 John Cowan under GPL 65

GETs that won't fit in a URI
● Restricting GET to a single line enforces a

good design principle that everything
interesting on the web should be URI-
addressable.

● Changing an application to fit GET's
limitations makes the application better by
making it compatible with the rest of the web
architecture

Copyright 2005 John Cowan under GPL 66

Reliability
● The Web consists of many redundant

resources
● It might be possible to find an alternate

representation and transfer the session there
● Databases don’t normally allow this
● The Web is a world of constantly shifting,

redundant, overlapping network components
in a wide variety of states.

Copyright 2005 John Cowan under GPL 67

Reliability
● You can do reliable delivery in HTTP easily at

the application level
● The guarantees provided by TCP get you pretty

far, and then you need just a bit more
● Connector reliability is solved by redundancy

and other standard means that have nothing
to do with REST

Copyright 2005 John Cowan under GPL 68

Reliability
● If at first you don't succeed, try, try again!
● The HTTP GET, PUT and DELETE methods are

already idempotent, but the POST method
creates new resources

● Multiple POSTs of the same data must be made
harmless

● Put some kind of message ID in a header or in
the message body

Copyright 2005 John Cowan under GPL 69

Reliability
● Clients aren't that good at generating truly

unique message IDs
● Paul Prescod’s solution:

– The client POSTs to a URI asking for a unique
server-generated message ID

– The server returns an HTTP "Location:" header
pointing to a newly generated URI where the
client may POST the actual data.

Copyright 2005 John Cowan under GPL 70

Reliability
● The original POST is used only to generate

message IDs, which are cheap.
– Retire them (whether they have been used or not)

after a few hours
– Or hold on to them for weeks!

Copyright 2005 John Cowan under GPL 71

Reliability
● Wasted IDs are irrelevant.
● Duplicated POSTs are not acted on by the

server
● The server must send back the same response

the original POST got, in case the application is
retrying because it lost the response

Copyright 2005 John Cowan under GPL 72

Asynchronous operations
● Send back notifications as POSTs (the client

can implement a trivial HTTP server)
● Piggyback them on the responses to later

requests
● No complete solution yet

Copyright 2005 John Cowan under GPL 73

Transactions
● The client is ultimately responsible
● Other designs aren't much better
● Database-style transactions don't scale well on

the Web
– Clients will start transactions and then forget

about them
– Ties up server resources
– Locks out all other users

Copyright 2005 John Cowan under GPL 74

REST outside the Web?
● REST concepts apply in general to any system
● Some problems can be solved more cleanly or

quickly with other non- or partially-REST
approaches

● But then you can't really participate in the
Web

● The larger or more foundational your system,
the more you need REST

Copyright 2005 John Cowan under GPL 75

B2B
● B2B systems usually assume that POSTed

documents disappear into each partner's
internal business systems

● Business processes would actually work better
if treated like a Web resource
– An order is a resource
– Shipments and payments are sub-resources

● Amazon gets this mostly right

Copyright 2005 John Cowan under GPL 76

Other protocols
● Other protocols are not organized around URIs

the way HTTP is
● They break up the address space into pieces,

some of which don't even have URIs
● HTTP was designed to manipulate resources

labeled by URIs

Copyright 2005 John Cowan under GPL 77

Tunneling HTTP
● If you really do need non-HTTP transport,

tunnel HTTP over that transport
● HTTP is pretty simple -- a couple of headers is

all you absolutely need

Copyright 2005 John Cowan under GPL 78

Clarifying “state”

Copyright 2005 John Cowan under GPL 79

Two kinds of state
● Application state is the information necessary

to understand the context of an interaction
– Authorization and authentication information are

examples of application state
● Resource state is the kind that the S in REST

refers to
● The "stateless" constraint means that all

messages must include all application state.

Copyright 2005 John Cowan under GPL 80

Resource state
● Changes in resource state are unavoidable

– Someone has to POST new resources before others
can GET them

● REST is about avoiding implicit or unnamed
state; resource state is named by URIs

● Application state is required by the server to
understand how to process a request

Copyright 2005 John Cowan under GPL 81

Session state
● Session state is also application state
● If you want a session, you often need smarter

clients than a browser
● Specialized clients can manage both

application and resource state

Copyright 2005 John Cowan under GPL 82

Sessions
● A purchasing client could send a single HTTP

request mentioning everything it wanted to
purchase in one message

● Shopping carts are for people, who have
trouble keeping state in their heads

Copyright 2005 John Cowan under GPL 83

The purpose of statelessness
● Prevents partial failures
● Allows for substrate independence

– Load-balancing
– Service interruptions

Copyright 2005 John Cowan under GPL 84

Another kind of state
● Don’t confuse REST state with state-machine

state
● REST state is the representation of the values

of the properties of a resource
● State machines fit into REST when the states

are expressed as resources with links
indicating transitions

Copyright 2005 John Cowan under GPL 85

From where we are
to where we’d like to be

Copyright 2005 John Cowan under GPL 86

The “OOP on the Web” theory
● HTTP is just a transport layer between objects
● Messages and objects are both opaque
● Objects jealously guard their private state

Copyright 2005 John Cowan under GPL 87

Smash the (private) state
● Eliminating private state lets us develop

architectures that can scale to larger designs.
● REST systems transfer the entire state of the

transaction at every state transition
● You can pick up where you left off by merely

accessing the URI at a later time, regardless of
client or server changes.

Copyright 2005 John Cowan under GPL 88

“My boss just wants it
on time and under budget”

● An analogy: Our genes want everyone to
reproduce

● But that doesn’t mean reproducing will always
make you any happier

● If your want to build a web-accessible toolkit
that a lot of people make use of, REST may help

● For a one-off project written by a small group
of developers, REST may be irrelevant

Copyright 2005 John Cowan under GPL 89

RPC characterized
● Every object has its own unique methods
● Methods can be remotely invoked over the

Internet
● A single URI represents the end-point, and

that's the only contact with the Web
● Data hidden behind method calls and

parameters
● Data is unavailable to Web applications

Copyright 2005 John Cowan under GPL 90

But in REST (just to rub it in)
● Every useful data object has an address
● Resources themselves are the targets for

method calls
● The list of methods is fixed for all resources

Copyright 2005 John Cowan under GPL 91

REST and RPC
● REST is, in a sense, a species of RPC, except the

methods have been defined in advance
● Most RPC applications don't adhere to the

REST philosophy
● It’s possible to work with RPC-style tools to

produce REST results
● Not that people actually do so!

Copyright 2005 John Cowan under GPL 92

Remote procedures
● Consider the stock example of a remote

procedure called “getStockPrice”
● This isn't a resource (verb, not noun)
● It's not clear what what it means to GET, PUT,

and POST to something called "getStockPrice"

Copyright 2005 John Cowan under GPL 93

REST just RPC renamed?
● But if we change the name from

"getStockPrice" to "CurrentStockPrice" (a
noun), all is well! ☺

● The differences between RPC and REST can be
quite subtle

● If that were all, REST would be just a design
style, not an architecture

Copyright 2005 John Cowan under GPL 94

There are no neutrals there
● REST is incompatible with "end-point" RPC
● Either you address data objects or you address

"software components“
– REST does the former
– End-point RPC does the latter

● You can try to contort RPC protocols into working on
data object URIs, but then you end up re-inventing a
non-standard variant of HTTP

Copyright 2005 John Cowan under GPL 95

Can REST really beat RPC?
● If REST works and RPC doesn't, then yes!
● SOAP began as pure RPC and has been moving

further and further away
● SOAP (and its parent XML-RPC) have been

around for years and yet there is no killer app
● REST can point to the Web itself as proof that

It Just Works

Copyright 2005 John Cowan under GPL 96

Two views of POST
● “POST lets you pass a whole lot of parameters

and get something back, bypassing caches.”
● “POST lets you create new resources that are

related to old ones.”
● The second is the REST attitude

Copyright 2005 John Cowan under GPL 97

REST: an alien notion
● RPC-over-HTTP is well-matched with current

thinking
● Take an existing object model, and a little

Web-specific glue, and simply export those
interfaces to the Web

● The problems creep in down the road

Copyright 2005 John Cowan under GPL 98

REST sounds ominous
● Completely rethink your design in terms of

generic interfaces
● Build servlet-style implementations of each

resource
● Unpack and repack Request and Response

objects
● The gluuuuue is up to yooooou.

Copyright 2005 John Cowan under GPL 99

REST sounds ominous
● Plenty of people do know how to develop

servlets
● Still, most developers and data modellers think

only in UML and OOP
● REST is potentially as significant a change as

the transition from procedures to objects

Copyright 2005 John Cowan under GPL 100

“REST is ha-ard” --RPC Barbie

● It sometimes takes as much work to learn to
use one tool well than five tools badly

● In the long run you are better off
● XML was ha-ard too for people used to HTML,

flat files, and CSV
● “Some people refused to learn to use the

telephone. They don’t work here any more.”

Copyright 2005 John Cowan under GPL 101

Paul Prescod shows us the REST way

POST /purchase_orders HTTP/1.1
Host: accounting.mycompany.com
content-type:
application/purchase-order+xml

....
<po>...</po>

Copyright 2005 John Cowan under GPL 102

And then there’s the SOAP way
POST /generic_message_handler
content-type: application/SOAP+XML

<soap:envelope>
 <soap:body>
 <submit-purchase-order>
 <destination>accounting.mycompany.com</destination>
 <po>...</po>
 </submit-purchase-order>
 </soap:body>
<soap:envelope>

Copyright 2005 John Cowan under GPL 103

Stacking the deck
● Namespace declarations would make the SOAP

example much bigger
● XML is not magic pixie dust: sometimes plain

text is all you need
● In the gazillions-of-transactions-per-second

world, these things count
● Do more with less

Copyright 2005 John Cowan under GPL 104

SOAP

Copyright 2005 John Cowan under GPL 105

SOAP: neither fish nor fowl
● A base from which to build new protocols and

tunnel them over existing application
protocols (typically HTTP)

● A means to extend the semantics of those same
application protocols

Copyright 2005 John Cowan under GPL 106

SOAP can be RPC or not
● Originally SOAP was a pure RPC transport like

its ancestor XML-RPC
● More recent versions of SOAP promote the less

problematic “document/literal” style, which is
analogous to email:
– No explicit method name
– The recipient decides what to do

Copyright 2005 John Cowan under GPL 107

POSTing a SOAP message
● Wrap the body in a SOAP envelope
● POST it to an endpoint URI
● A response comes back, which you must

unwrap
● Or you might get a fault, which overrides

(older SOAP) or duplicates (newer SOAP) the
HTTP response code

Copyright 2005 John Cowan under GPL 108

POSTing a SOAP message
● SOAP uses its envelope for what new HTTP

headers could do
● SOAP provides the meta-metadata "actor" and

"mustUnderstand"
● If the body of the SOAP message represents an

entity that is being POSTed to something, at
least part of the REST style is preserved

Copyright 2005 John Cowan under GPL 109

The advantages of SOAPless GET
● More tools out there that can do HTTP gets

(proxies, spiders, browsers) than can interpret
your SOAP method as a getter

● Resources that are gettable have URIs that can
be linked to

● SOAP endpoints should at least provide an
alternate interface that allows vanilla HTTP
getting

Copyright 2005 John Cowan under GPL 110

HTTP is not a transport protocol
● If the body of a POST or PUT is not a piece of

representational state, you're not doing REST
● HTTP already defines these methods and

doesn't need new ones inside the POST body

Copyright 2005 John Cowan under GPL 111

HTTP is not a transport protocol
● SOAP abuses HTTP by treating it as a transport

protocol like TCP
– “HTTP only exists to carry bits, namely SOAP

messages, with or without a method name”
● HTTP is an application protocol; it doesn't send

bits, it transfers representational state

Copyright 2005 John Cowan under GPL 112

Web Method specification
● SOAP 1.2 exposes the HTTP method through

the SOAP binding
● SOAP clients can use GET to retrieve SOAP

envelopes that contain the state of the
resource identified by the URI

Copyright 2005 John Cowan under GPL 113

Web Method specification
● Potentially radically different from the

common uses of SOAP 1.1
● Will SOAP 1.2 applications automatically

become more RESTful? Not a bit
● Most SOAP users will probably continue to use

SOAP 1.2 in the same ways as SOAP 1.1.

Copyright 2005 John Cowan under GPL 114

Cleaning up current practice

Copyright 2005 John Cowan under GPL 115

Cookies
● A receipt for application state handed out by

the server
● Using cookies is being stateful:

– Not all application state is carried in the message
– The cookie's referent is held on the server

Copyright 2005 John Cowan under GPL 116

Cookies aren't all bad
● At least there exists a reference to the state
● The request can be load balanced to some

other server within the same trust domain for
processing

● Beyond that trust domain, cookies don't mean
anything to anybody

● That makes people paranoid about them

Copyright 2005 John Cowan under GPL 117

Cookie problems
● Cookies break visibility

– Caches don't understand them
● Cookies are bad authenticators

– They give up security for efficiency
● Clients often shut off cookies to provide real or

imagined privacy

Copyright 2005 John Cowan under GPL 118

Keeping state in the cookie
● Lets URIs be independent of the user state
● But it destroys the client's understanding of

state as presented by hypertext
● It breaks the Back button

Copyright 2005 John Cowan under GPL 119

Keeping a reference to state
● Storing state on the client provides REST's

scalability.
● Sites with client sessions on the back end are

usually several orders of magnitude less
scalable than REST-based applications

● They also require much more complex back-
end engines (J2EE, for example)

Copyright 2005 John Cowan under GPL 120

Keeping identity in the cookie
● Cookies are more efficient than proper HTTP

authentication
– servers and intermediaries simply ignore them for

most URIs (e.g., inline images)
● But the server is relying on security by

obscurity
● Cross-site scripting and cookie guessing are

real dangers

Copyright 2005 John Cowan under GPL 121

Tunneling
● Using POST to send data that's supposed to

mean something other than POST to the
recipient is tunneling

● Administrators detest tunneling and for good
reason

● Because SOAP is a meta-application protocol,
tunneling is its middle name

Copyright 2005 John Cowan under GPL 122

Don't tunnel through port 80
● Firewalls and ports exist for a reason
● When you show up at the airport, if you claim

that you are a pilot you'll probably get waved
through more quickly. But ...

● It's dangerous to lie to the firewall systems
put up by people working for the same
company you do, trying to protect it from the
outside world

Copyright 2005 John Cowan under GPL 123

Don't tunnel through port 80
● Security administrators will find a way to shut

your RPC over port 80 down
● Then you'll have to add another layer of

obfuscation
● In the long run the extra layer will no longer

buy you a free pass through the firewall
● You end up with an arms race of escalating

obfuscation and detection

Copyright 2005 John Cowan under GPL 124

Application protocols and safety
● Applications protocols provide safety

guarantees by providing a fixed interface
● Only limited things can be done through the

interface
● SMTP doesn't let you do anything but send

mail
● It can't be used to retrieve files unless

somebody explicitly installs software that
allows such tunneling

Copyright 2005 John Cowan under GPL 125

Application protocols and safety
● SMTP doesn't include such tunneling features

by default
● Consequently it is trusted and well deployed
● (Spam is not an SMTP problem per se)
● Fixed interfaces are secure, because software

implementing them only does what it's
designed to do

Copyright 2005 John Cowan under GPL 126

Use HTTP as HTTP
● Use HTTP because it is pragmatic
● Also use HTTP as HTTP so that it works with,

not against the firewall software and firewall
administrators

● Make each message as visible as possible to the
firewall, and invisible and opaque to crackers

● Letting arbitrary requests tunnel through your
firewall is asking to lose

Copyright 2005 John Cowan under GPL 127

Plain HTTP vs. SOAP on HTTP
● See Paul Prescod’s examples again
● Which one can be readily filtered with

security software?
● Which one can a sysadmin inspect and

understand in a logfile?

Copyright 2005 John Cowan under GPL 128

Working with REST, not against it
● Reconsider your application's needs in terms

of the provided interfaces and semantics
● Don't try to figure out how to subvert or

extend HTTP to encompass what you think
your application semantics are

Copyright 2005 John Cowan under GPL 129

RESTafarian Email: an example

Copyright 2005 John Cowan under GPL 130

RESTafarian Email
● If we were designing email from scratch on

REST principles, what might it look like?
● This is one possible way, not the One True REST

Way
● REST is nothing if not flexible, provided you

stick to the few principles we've already seen

Copyright 2005 John Cowan under GPL 131

Mail servers keep outgoing mail
● To post an email, use POST!
● Your local outbound mail server exposes a URI

where outbound messages can be posted
● Security makes sure only authorized users can

post
● The mail never leaves the server until the

sender or the recipient decide to delete it

Copyright 2005 John Cowan under GPL 132

Mailbox servers keep inbox state
● To read your mail, use GET to fetch a set of

hyperlinks (nicely formatted) that represent
incoming messages

● GETting one link sends you to the mail server
that has the message and retrieves it

● DELETE removes messages you no longer want

Copyright 2005 John Cowan under GPL 133

Mailbox servers keep inbox state
● Archived messages are displayed in views you

can GET
● Folderizing is POSTing a message containing a

URI to the folder (which itself has a URI)
● Forwarding is almost like folderizing, but to

someone else’s inbox
● Higher-level services like searches are done by

POST and create new resources that you can
wait for or GET later

Copyright 2005 John Cowan under GPL 134

Mail notification
● Mail servers have to tell mailbox servers that

mail is available
● Inbound servers expose a URI that can be

POSTed to with a cheap message containing
just a URI

Copyright 2005 John Cowan under GPL 135

No spam!
● Any recipient can delete a message, so just

keeping one copy on the spammer’s mail
server won’t work

● Spammers would have to keep zillions of
copies on their mail servers

● That costs $$$$ and draws attention
● A spam no one gets to read isn't a spam

Copyright 2005 John Cowan under GPL 136

No spam!
● Of course a spammer can cheat by using a

server that improperly ignores DELETEs
● But that only works once, as such servers get

blacklisted (and they cannot trivially hide
their identities)

● No social problem can be completely solved by
technical fixes

Copyright 2005 John Cowan under GPL 137

“Post in haste, repent at leisure”
● SMTP mail once sent can't be retrieved
● Senders can use PUT or DELETE to modify or

remove their mails even after posting them
● Of course, that doesn't change the state in the

recipient's head

Copyright 2005 John Cowan under GPL 138

Related architectures

Copyright 2005 John Cowan under GPL 139

Systems vs. applications programming
● Systems programming emphasizes making the

new domain fit into the existing generic
interfaces

● Applications programming models the
application domain precisely first, worries
about integration afterwards (if at all)

Copyright 2005 John Cowan under GPL 140

Thoughts of a systems geek
● If applications programmers thought more like

systems programmers, the world would be a
better place

● If a problem is not interesting, generalize it
until it is, then solve the general problem

Copyright 2005 John Cowan under GPL 141

The Unix Way
● Unix has destroyed all its competitors but one

(to the point where many people can't even
name those other competitors)

● The core of Unix is its software tools
philosophy:
– the ability to string together lots of little special-

purpose tools with generic interfaces

Copyright 2005 John Cowan under GPL 142

The Unix Way
● Everything is a file

– Files have a generic interface
– All resources in the system could be accessed

through these narrow interfaces
– Some things were always exceptions
– Unix networking broke this philosophy
– The Plan 9 research OS restored it, doubled and in

spades

Copyright 2005 John Cowan under GPL 143

REST from a Unix viewpoint
● Resources rather than files
● URI space instead of the filesystem
● A slightly different (even narrower) generic

interface
● But the focus is the same: a generic shared

abstraction, not point-to-point interface
coordination.

Copyright 2005 John Cowan under GPL 144

Other coordination environments
● In Linda, you get and put anonymous tuples
● In UNIX shell programming, autonomous

programs read and write from pipes
● Plan 9 extends the filesystem to be a universal

namespace
● To write a device driver, you implement open

and close and read and write and ioctl and ...

Copyright 2005 John Cowan under GPL 145

Final thoughts

Copyright 2005 John Cowan under GPL 146

Has RPC really failed?
● ONC and DCE RPC are the basis of:

– Plenty of enterprise software
– The widely deployed NFS

● CORBA and DCOM are in lots of industrial-
strength enterprise software.

Copyright 2005 John Cowan under GPL 147

REST and WS-*
● In the end, WS-* is just there, like Windows
● REST people need to work to ensure that the

WS-* stack is sufficiently rich to be useful to
them

● Two different design styles, informed by
different needs and values

● They should still share a technology base as
much as possible (and no more)

Copyright 2005 John Cowan under GPL 148

You're my only hope
● The only thing that can really make REST work

for us all is broad education in:
– What, exactly, the REST style is
– How to design to it
– Why it's a Good Thing

● But that’s why you’re here

